

International Real Estate Business School Universität Regensburg

Sustainable Real Estate University Seminar – "CRREM"

Regensburg

09.06.2020

*** * * ***

University Seminar – "CRREM"

International Real Estate Business School Universität Regensburg

Profitability/ Anyway-costs	Embodied	Carbon accounting and reporting
	carbon	, ,
Change of emissions heating/cooling load,	factors, prices BUILDIN	Regulated vs. unregulated emissions NGS
	and	Strategic options
Scope 1,2,3	CLIMATE PRO	TECTION (Sell, Hold, Retrofit – Timing)
	More than savi	ng energy
Investor/Tenant/		Carbon pricing
Occupancy	GHG saving	gs
Carbon budge downscaling	t Liability	Predictability/Reliability of regulation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

Slide 2 Sustainable Real Estate - SS 2020

- 1. Introducing the CRREM project
- 2. Specific Issues regarding Carbon Risk (Q&A)
- 3. Case Study: Calculating carbon emissions & stranding risks
- 4. What's new?

1. Introducing the CRREM project

- 2. Specific Issues regarding Carbon Risk (Q&A)
- 3. Case Study: Calculating carbon emissions & stranding risks
- 4. What's new?

<u>Project title</u>: CRREM: Carbon Risk Real Estate Monitor - Framework for science based decarbonisation pathways, toolkit to identify stranded assets and push sustainable investments

<u>Duration</u>: February 2018 – January 2021 <u>Funding</u>: EU H2020 framework programme

General objectives:

- <u>Downscaling & transparency</u>: Breaking down global GHG emissions budget by sector, company and property level for more transparency and capacity building
- <u>Strategic implication of "Stranded assets"</u>: Defining areas for improvement and strategic options
- <u>Framework, toolkits & methods</u>: Making decarbonisation in the commercial real estate sector measurable

International Real Estate Business School Universität Regensburg

CRREM Project homepage: <u>www.crrem.eu</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

Slide 6 Sustainable Real Estate - SS 2020

- 1. Introducing the CRREM project
- 2. Specific Issues regarding Carbon Risk (Q&A)
- 3. Case Study: Calculating carbon emissions & stranding risks
- 4. What's new?

Fundamental questions and answers regarding carbon counting:

- 1. Why is Carbon Dioxide so relevant to limit climate change? What does the term "Decarbonisation" refer to?
- 2. Why is it important to focus on real estate to limit / reduce emissions?
- 3. How can carbon emissions be assessed for real estate and what might be important when doing so?
- 4. How can real estate investors benchmark the carbon footprint and derive targets for decarbonisation? What must be addressed when setting targets on a timeline until 2050?
- 5. Corporate carbon risk management:
 - A. Is the carbon footprint and potential decarbonisation effecting the risk-return profile?
 - B. Explain the concept of stranded real estate assets.
 - C. How could carbon risk be managed effectively?
 - D. What about carbon pricing? Is real estate affected in that respect?
 - E. How do you assess an energetic retrofitting?
- 6. What are (relevant) guidelines and regulations?

1. Why is Carbon Dioxide so relevant to limit climate change? What does the term <u>"Decarbonisation" refer to?:</u>

- Dramatic rise in the atmospheric concertation (PPM) of carbon dioxide and other GHGs compared to the preindustrial level
- Paris Climate Agreement: Limit global warming to below 2° C; or even 1.5° C
- The remaining emission budget until 2050 in order to limit the global warming is about
 669 GtCO₂e (1.5°C) and 784 GtCO₂e (2°C).
- However, with current emission pledges, this budget will be consumed by 2036 (14 years prior to 2050) and the global warming will reach approx. 3° C
- Decarbonisation: the profound transformation of the economy from fossil fuels towards a sustainable, renewable energy-based economy which involves considerable transition risks.
- These global carbon budgets need to be broken down into decarbonisation pathways for different economic sectors (including real estate) and countries to allocate carbon reduction responsibilities.

2. Why is it important to focus on real estate to limit / reduce emissions?:

- The real estate industry is among the highest emitters of GHG accounting for approx. 30 % of total GHG emissions and therefore plays a crucial role in future mitigation efforts.
- Emissions resulting form the operation of buildings have to be taken into account as well as those originating from construction and refurbishment activities (embodied carbon).
- Existing housing stock drives energy consumption and operational expenditures significantly:
 - 35 % of buildings are older than 50 years
 - 40 % of energy consumption caused
- Population growth and economic growth drive the construction activities and have to be considered as well, further rising the GHG emissions of the sector.
- In contrary, the real estate industry faces relatively low abatement costs for energetic retrofit measures (i.e. low hanging fruits) in comparison with other sectors.
- **Abatement costs:** costs of reducing energy consumption / carbon emissions by a certain amount.

2. Why is it important to focus on real estate to limit / reduce emissions?:

The abatement cost curve provides a "map" of carbon reduction opportunities Cost of Abatement, 2030, €/tCO2e

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

Source: McKinsey, 2011

Sustainable Real Estate - SS 2020

Slide 11

3. How can carbon emissions be assessed for real estate and what might be important when doing so?:

- 1. Data requirements:
 - First insights: operational carbon emissions during the usage phase have to be considered, especially those originating form the consumption of electricity or cooling and heating of the building
 - It's important to focus on the data for the whole building and therefore consider the data of both owner and tenants (regardless of who pays the energy bills).
 - The so-called 'tenant-investor-dilemma' is not only relevant for the process of data gathering, but also for the costbenefit distribution of certain retrofit measures.
- 2. Consumption vs. emissions:
 - In a second step, the energy consumption data has to be transformed into GHG emission data via the use of socalled emission factors.
 - These emission factors state how much GHG emissions (in kg CO2e) are released by the consumption of one unit of a specific energy source (e.g. Oil, Gas etc.)
 - While the emission factors are fixed values for Oil and Gas, they differ significantly for the electricity market depending in the building location (country-specific or even regional variations) and vary over time.

3. How can carbon emissions be assessed for real estate and what might be important when doing so?:

- 3. Adjustment process / possible influences:
 - Vacancy rates
 - Usage type and mixed property
 - Weather in the year of assessment
 - Risk assessment requires future perspective: Change of electricity emission factor (grid decarbonization) and effect
 of climate change on heating and cooling demand.
- 4. Saving climate by energetic retrofits (?):
 - Yes, since new construction rate is approx. < 2% BUT: Embodied carbon has to be considered as well.
 - General rule for retrofits: Always choose the retrofit measure with the maximum abatement efficiency.

International Real Estate Business School Universität Regensburg

1981-2010 1981-2010 HDD CDD 4,376 RCP4.5 RCP4.5 2041-2070 2041-2070 <u>HDD</u> CDD 4,376 826

Consideration of effects of changing heating and cooling loads and electric grid decarbonisation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

Slide 14 Sustainable Real Estate - SS 2020

3. How can carbon emissions be assessed for real estate and what might be important when doing so?:

- 5. Scopes Operational and embodied carbon:
 - CO₂ vs. CO₂e: Other greenhouse gases have to be considered as well (e.g.: CH₄, N₂O, etc.)
 - Scopes 1,2,3
- 6. What's the benchmark the sector should use?:
 - Carbon intensity (annual emissions per floor area or per revenue)
 - kgCO2e/m²/a or kgCO₂e/€/a
- 7. Which template should be used for the data collection?:
 - There are already enough IT-systems and initiatives
 - Generally, do not re-invent the wheel, use existing schemes.
 - Example: EPRA, GRESB, GRI etc.
- 8. External data:
 - Emission factors and HDD/CDD required (database!)
- 9. Discussion in Carbon offsetting
 - Location vs. market-based approach

International Real Estate Business School Universität Regensburg

IRE BS

What needs to be addressed for deriving a KPI for RE carbon?

- GHG Protocol: Standards for assessment, accounting and reporting of GHG emissions (World Resources Institute WRI & World Business Council for Sustainable Development WBCSD)
- Accounting: Energy consumption (fuels, electricity), conversion to GHG with emissions factors. Challenge: lack of tenant data (esp. electricity consumption)
- Reporting: Emission scopes 1, 2, 3
- S1: Direct emissions from burning fuels or leakages
- S2: Indirect emissions from energy consumption
- S3: Indirect emissions from upstream and downstream processes

Source: GHG Protocol, 2013.

Status quo of carbon risk integration in corporate strategies

Source: CRREM, 2019.

Status quo of carbon risk integration in corporate strategies

Short 17% 33% 17% (1-5 years) Holding period Medium 18% 9% (6-10 years) Long 54% 8% 8% (>10 years) 0% 10% 20% 30% 50% 70% 80% 90% 40% 60% 100% Assessment of carbon risk: Yes, in a substantial manner Yes, partially Other No Source: CRREM, 2019.

Figure D-3: Impact of preferred holding periods on extent of carbon risk assessment

4. How can real estate investors benchmark the carbon footprint and derive targets for decarbonisation? What must be addressed when setting targets on a timeline until 2050?:

- CRREM Carbon Risk Real Estate Monitor:
 - Decarbonisation targets for various countries and usage types on property level
 - Emission factors and adjustment for HDD/CDD are implemented automatically
 - Automatic adjustment of occupancy (vacancy rates)
 - Possibility to calculate energy costs and carbon costs (excess emissions)
 - Simulation of retrofit measures
 - Simulation of different mitigation scenarios (1.5 vs. 2 degree)
 - Default and user-defined assumptions
- Timeline: Consideration of side effects:
 - Grid decarbonisation is evolving,
 - Effects of climate change on HDD/CDD
 - Timing of retrofit measures

<u>Report: "Stranding Risk & Carbon - Science-based decarbonizing of the EU commercial</u> <u>real estate sector"</u>

KEY FINDINGS

- At the current rate of emissions the EU commercial real estate 1.5°C carbon budget for 2050 will be consumed 14 years ahead of schedule in 2036.
- EU's current carbon reduction pledges will lead to an above 2°C global warming scenario.
- Buildings will need to reduce their carbon emissions by more than 80% until 2050.

GHG TARGETS DISAGGREGATED BY COUNTRY AND BUILDING USE TYPE

5. Corporate carbon risk management:

- A. Is the carbon footprint and potential decarbonisation effecting the risk-return profile?
 - Transition risk and brown discount, not just pure present values but derived from hedonic pricing
 - Stranding risk and potential carbon pricing

5.B. Explain the concept of stranded assets.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

Slide 22 Sustainable Real Estate - SS 2020

IREBS

5. Corporate carbon risk management:

- C. How could carbon risk be managed effectively?
 - transparency about own consumptions and emissions
 - knowledge about targets and current industry best practise
 - monitoring & benchmarking of own results
 - undertaking retrofits/refurbishments to optimize carbon footprint
- D. What about carbon pricing? Is real estate effected in that respect?
 - currently real estate in Europe NOT included in the ETS but EPBD
 - ongoing discussion about carbon tax and pricing
 - "excess emissions" once stranded might be calculated as the maximum euro amount for refurbishment budget

REBS

International Real Estate Business School Universität Regensburg

5.E. How do you assess an energetic retrofitting?

Economical: Annual energy cost savings vs. Investment costs: Assessment of net present value of energetic retrofit measure

Ecological: Annual GHG emission savings vs. embodied carbon \rightarrow Supplementing the economic break-even point with an ecological one

Embodied carbon of retrofit measures is not included in corporate reporting so far

Source: CRREM

IRE BS

5.E. How could asset management manage risk? The CRREM approach

USER **INITIAL USER INPUT RETROFIT DECISION** STATIC DYNAMIC Investment sum Year of assessment Occupancy Specific type of retrofit measure Reference no. Property characteristics Location Energy consumption ... User defined Marginal abatement Costs · Floor area ... RESULTS BASELINE AND PROJECTION OF STRANDING RISK RETROFIT Strandin GHG emissions Breakeven Pe Carbon costs Asset GHG inten Costs of retrofitting Energy costs Retrofit STRANDING Secto target RISK Break 2050 Year Yea even **CRREM DATABASE** Emission factors + forecast Climate change impact Marginal abatement costs Weather normalisation Carbon prices + forecast (per country, use type, type of measure) Energy prices + forecast GHG targets: SBT, INDC

Source: CRREM

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

Slide 25 Sustainable Real Estate - SS 2020

IRE BS

USER INPUT

- Property characteristics: Location, year of construction, energetic characteristics, occupancy, energy consumption
- User assumptions: Discounting, carbon price, energy prices, abatement costs, own...

RESULTS

'Stranding Diagramm', stranding risk, costs of retrofits necessary to meet targets, carbon costs, asset level, portfolio...

DATABASE

 GHG reduction targets, emission factors, weather normalisation, energy prices, carbon price, HDD/CDD, abatement costs, grid decarbonisation...

6. What are (relevant) guidelines and regulations?:

- Carbon Disclosure Project
- GRESB
- INREV
- EPRA
- **GRI:** Global Reporting Initiative
- etc.

IREBS

- 2. Specific Issues regarding Carbon Risk (Q&A)
- 3. Case Study: Calculating carbon emissions & stranding risks
- 4. What's new?

International Real Estate Business School Universität Regensburg

Click the desired functionality. Stranding risk analysis requires input data on asset level.

© CRREM 2020

Decarbonisation targets for different property types and each EU member state can be viewed without entering specific asset data.

Click the CRREM logo on any sheet to return to this summary.

Disclaimer

All the information in this tool is shared in good faith and for general information purpose only. The application is free of charge and without any commitment. The CRREM Consortium does not retrieve or archive any of your personal data or other metainformation. The CRREM Consortium does not retrieve, process, archive, or forward any of your input or output data . Neither the CRREM consortium, its members nor the European Commission can help you to recover data or can be made liable for any loss of data. Beyond the intended use, all content, images and the resulting data of the tool must not be transmitted to third parties, appropriated or commercially exploited without the CRREM consortium's consent. The tool is utilised at your own risk. Neither the CRREM consortium, its members nor the European Commission are liable for any damages resulting from the application of this tool.

The software, its documentation and its underlying data sets are provided "as is" and neither the European Commission, the CRREM Consortium, nor its member organisations have any obligation to provide maintenance, support or updates after the duration of the project. The Carbon Risk Real Estate Monitor (CRREM) is provided to you without any guarantee for correctness or completeness.

Any action you take upon the information you find in this tool, is strictly at your own risk. CRREM will not be liable for any losses and/or damages in connection with the use of our website. By using this tool, you hereby consent to this disclaimer and agree to its terms.

International Real Estate Business School Universität Regensburg

Funded by the Horizon 2020

Framework Programme of the European Union

DECARBONISATION TARGET TOOL

The CRREM Decarbonisation Target Tool offers the possibility to assess country- and building-type-specific GHG intensity and energy reduction pathways aligned to limiting global warming to 1.5°C or 2°C

International Real Estate Business School Universität Regensburg

Click the desired functionality. **Stranding risk analysis** requires **input data on asset level**. **Decarbonisation targets** for different property types and each EU member state can be viewed without entering specific asset data. Click the **CRREM logo** on any sheet to return to this summary.

Disclaimer

All the information in this tool is shared in good faith and for general information purpose only. The application is free of charge and without any commitment. The CRREM Consortium does not retrieve or archive any of your personal data or other metainformation. The CRREM Consortium does not retrieve, process, archive, or forward any of your input or output data . Neither the CRREM consortium, its members nor the European Commission can help you to recover data or can be made liable for any loss of data. Beyond the intended use, all content, images and the resulting data of the tool must not be transmitted to third parties, appropriated or commercially exploited without the CRREM consortium's consent. The tool is utilised at your own risk. Neither the CRREM consortium, its members nor the European Commission are liable for any damages resulting from the application of this tool.

The software, its documentation and its underlying data sets are provided "as is" and neither the European Commission, the CRREM Consortium, nor its member organisations have any obligation to provide maintenance, support or updates after the duration of the project. The Carbon Risk Real Estate Monitor (CRREM) is provided to you without any guarantee for correctness or completeness.

Any action you take upon the information you find in this tool, is strictly at your own risk. CRREM will not be liable for any losses and/or damages in connection with the use of our website. By using this tool, you hereby consent to this disclaimer and agree to its terms.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

Slide 30 Sustainable Real Estate - SS 2020

Users may employ the plus- and minus-signs above column headers to collapse and expand data groups.

		General inform	ation												
Asset ID	Inclusion	Asset Name	Reporting year	Gross Asset Value (GAV)	Reportin	g period	Entity								
Pre-filled			Mandatory	Optional (required for calculating certain risk indicators)	Starting month Mandatory	Months of data Mandatory	Optional (for further possibilities of aggregation)	General information	Building characteristics	Energy consumption	Fugitive emissions	Renewable energy	Retrofit actions	Click on 'User- defined settings' to change CRREM default assumptions for a specific asset	Click on 'results' to see results of CRREM stranding risk analysis on asset level. (you will have to manually select the desired asset (ID) in the asset results sheet)
ID	Dropdown INC	Text NAME	Year A.S.YR	[€] GAV	Drop-down AS.MON	Number of Months AS.LENG	Text <i>ENT</i>								
1	Include	Steinbach Tower	2018	2.000.000	January	10								User-defined settings	<u>Results</u>
2	Include	Linden Paleis	2018	6.000.000	January	12	Fund 2							User-defined settings	<u>Results</u>
3	Include	Smalle Kanaal	2018	4.750.000	January	12	Fund 2							User-defined settings	<u>Results</u>
4	Include	Maison Eiffel	2018	4.750.000	January	12	Fund 2							User-defined settings	<u>Results</u>
5	Include	Example Name 2	2018	1.000.000	February	10								User-defined settings	<u>Results</u>

			Building charact	naracteristics																
Asset ID	Inclusion			Locati	ion		Property type		Floor area share of different property types in mixed use buildings									Air conditioning	Asset	size
		nation			,	, ,						Industrial.					Check if floor			
		al inforr	Country	City	Zip Code	Address		Office	Retail, High Street	Retail, Shopping Center	Retail, Warehouse	Distribution Warehouse	Hotel	Healthcare	Lodging, Leisure & Recreation	Data Centers	area shares sum up to 100%		Total gross internal area (IMPS 2)	Average annual vacant area
Pre- filled		Genera	Mandatory	Optional (only to be displayed in results)	Optional (for improved accuracy)	Optional (only to be displayed in results)	Mandatory	Mandatory if Property type = Mixed Use	Mandatory if Property type = Mixed Use	Mandatory if Property type = Mixed Use	Mandatory if Property type = Mixed Use	Mandatory if Property type = Mixed Use	Mandatory if Property type = Mixed Use	Mandatory if Property type = Mixed Use	Mandatory if Property type = Mixed Use	Mandatory if Property type = Mixed Use		Optional	Mandatory	Mandatory
D	Dropdown INC		Drop-down COUN	Text CITY	Text/Numbers ZIP	Text Address	Type of use AS.TY	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	MX.100	Drop-down AC.YN	[m²] TO.FL	[m²] BSR_OC.AN
1	Include		Austria	Wörgl	6300	Josef-Steinbacher- Straße 1	Office												6.000	300
2	Include		Austria	Kufstein	6330	Andreas-Hofer-Straße 9	Mixed Use	10%	12%	, 70%	0%	0%	0%	0%	0%	8%	Sum=100%		1.000	
3	Include		Netherlands	Amsterdam	2514		Office												1.500	
4	Include		France	Paris	75000		Office												1.000	
5	Include		Austria	Wörgl	6300		Retail, High Street												300	

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

IRE BS

International Real Estate Business School

				Energy con	sumption																							
Asset ID	Inclusion	nation	teristics	Ene	ergy used by	tenants and	d base buildir	ig services to	lettable/lea	asable and	common sp	baces. This sh	Combine ould includ	Whole ed energy c le all energ	building onsumptio y supplied	energy co n of Comm to the buil	onsumpti non Areas + ding for th	ion ⊦Tenant Sp ie operatio	ace In of the bui	lding and th	ne tenant spa	ace except f	rom energy	consumed a	as part of ref	furbishmer	it measures	
		iforn	aract	G	rid Electricity			Natural gas			Fuel oil			District hea	ting [steam]		D	District cooli	ng [chilled wat	er]	Oth	er energy cor	isumption typ	e 1	Oth	er energy cor	isumption typ	pe 2
Dre-		neral in	ding ch	Usage	Data Coverage	Maximum Coverage	Usage	Data Coverage	Maximum Coverage	Usage	Data Coverage	Maximum Coverage	Usage	Set user- defined emission	Data Coverage	Maximum Coverage	Usage	Set user- defined emission	Data Coverage	Maximum Coverage	Түре	Usage	Data Coverage	Maximum Coverage	Туре	Usage	Data Coverage	Maximum Coverage
filled		ğ	Buil		Mandatory if usage ≠0	Mandatory if usage ≠ 0		Mandatory if usage ≠ 0	Mandatory if usage ≠ 0		Mandatory if usage ≠ 0	Mandatory if usage ≠ 0		factor	Mandatory if usage ≠ 0	Mandatory if usage ≠ 0		factor	Mandatory if usage ≠ 0	Mandatory if usage ≠ 0	Mandatory if usage ≠ 0		Mandatory if usage ≠ 0	Mandatory if usage ≠ 0	Mandatory if usage ≠ 0		Mandatory if usage ≠ 0	Mandatory if usage ≠ 0
	Dropdown			[kwh]	(m²)	(m²)	[kWh]	[m*]	[m²]	(kWh)	(m²)	[m*]	[kWh]	Hyperlink	[m]	[m]	[KWh]	Hyperlink	[m ⁸]	[m²]	Drop-down	[kWh]	(m²)	[m ²]	Drop-down	[kWh]	[m ²]	[m ³]
1	Include			150.000	6.000	6.000	340.000	5.500	6.000	u.u.	or. be	OL.MC	10.000	Settings	5.500	6.000	2.000	<u>Settings</u>	5.000	5.000	Biogas	20.000	5.000	5.000	Biogas	1.000	5.000	5.000
2	Include			30.000	10.764	10.764	70.000	10.764	10.764				10.000	Settings	10.764	10.764	0	<u>Settings</u>										
3	Include			120.000	1.000	1.000	55.000	700	900				10.000	Settings	75	100	0	Settings			Wood pellets	1.000	700	900				
4	Include			10.000	1.000	1.000	80.000	700	900					<u>Settings</u>	75	100	0	<u>Settings</u>										
5	Include			20.000	300	300	20.000	300	300					Settings				Settings										

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

IRE BS

International Real Estate Business School

Fugitive emissions Asset Inclusion **Refrigerant losses / Fugitive emissions** ID **Building characteristics** Energy consumption Whole building (Can only be reported at whole building) **General information** Same reporting period as energy consumption data Gas 1 Gas 2 Type of gas Amount of leakage Type of gas Amount of leakage Mandatory if amount of Mandatory if amount of Pre-filled leakage ≠ 0 leakage ≠ 0 Dropdown Drop-down [kg] Drop-down [kg] ID INC GHG.Leak1.Type GHG.Leak1.Amount GHG.Leak2.Type GHG.Leak2.Amount 1 Include Carbon dioxide (CO2) 10 Methane (CH4) 10 2 Include Carbon dioxide (CO2) 20 Methane (CH4) 20 30 30 Carbon dioxide (CO2) Methane (CH4) 3 Include 4 Include 5 Include

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

IRE BS

International Real Estate Business School

Renewable energy Other on-site renewable Asset **On-site renewable** Off-site renewable electricity Inclusion energy source (heatpump, Generated off-site and consumed on-site ID electricity (PV, wind) solar thermal) **Building characteristics** Energy consumption General information **Fugitive emissions** Generated Generally, off-site renewables do not constitute a quality Generated Generated on-Generated oncharacteristic reducing carbon risk of individual buildings. Only and and site and renewable electricity purchased directly from a generator / site and consumed onconsumed retailer through a power purchasing agreement or contract can exported exported site on-site be acknowledged under strict conditions. Reporting Emission factor if Pre-filled Amount Amount Amount Amount Amount market-based method Dropdown [kWh] [kWh] [kWh] Drop-down [kgCO2e/kWh] [kWh] [kWh] ID INC Location-based 1 Include -approach Location-based 2 Include 100 approach Location-based 3 Include 100 approach Location-based 4 Include 100 approach Location-based 5 Include approach

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

IRE BS

International Real Estate Business School

							Retrofit	actions											
Asset ID	Inclusion	tion	istics	tion	SU	ß		Retrofit action				Retrofit action 2				Retrofit action 3			
Pre-filled		General informat	Building character	Energy consump	Fugitive emissio	Renewable ener	Year	Investment	Achieved reduction of energy consumption [%] - Leave blank to apply default values	Embodied carbon related to retrofit action	Year	Investment	Achieved reduction of energy consumption [96] - Leave blank to apply default values	Embodied carbon related to retrofit action	Year		Achieved reduction of energy consumption [96] - Leave blank to apply default values	Embodied carbon related to retrofit action	
ID	Dropdown INC						[yyyy] RF1.YR	[€] RF1.EUR	[%] RF1.PC	[kg] RF1.EC	(yyyy) RF2.YR	[€] RF2.EUR	[%] RF2.PC	[kg] RF2.EC	[yyyy] RF3.YR		[%] RF3.PC	[kg] RF3.EC	DatCent
1	Include						2024	350.000 €	50%	400.000									
2	Include																		Not available for data centers and mixed use
3	Include																		
4	Include																		
5	Include																		

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

IRE BS

International Real Estate Business School

International Real Estate Business School Universität Regensburg

Click the desired functionality. **Stranding risk analysis** requires **input data on asset level**. **Decarbonisation targets** for different property types and each EU member state can be viewed without entering specific asset data. Click the **CRREM logo** on any sheet to return to this summary.

Disclaimer

All the information in this tool is shared in good faith and for general information purpose only. The application is free of charge and without any commitment. The CRREM Consortium does not retrieve or archive any of your personal data or other metainformation. The CRREM Consortium does not retrieve, process, archive, or forward any of your input or output data . Neither the CRREM consortium, its members nor the European Commission can help you to recover data or can be made liable for any loss of data. Beyond the intended use, all content, images and the resulting data of the tool must not be transmitted to third parties, appropriated or commercially exploited without the CRREM consortium's consent. The tool is utilised at your own risk. Neither the CRREM consortium, its members nor the European Commission are liable for any damages resulting from the application of this tool.

The software, its documentation and its underlying data sets are provided "as is" and neither the European Commission, the CRREM Consortium, nor its member organisations have any obligation to provide maintenance, support or updates after the duration of the project. The Carbon Risk Real Estate Monitor (CRREM) is provided to you without any guarantee for correctness or completeness.

Any action you take upon the information you find in this tool, is strictly at your own risk. CRREM will not be liable for any losses and/or damages in connection with the use of our website. By using this tool, you hereby consent to this disclaimer and agree to its terms.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

Slide 37 Sustainable Real Estate - SS 2020

Click here to see results on a portfolio level

International Real Estate Business School Universität Regensburg

STRANDING RISK ANALYSIS ASSET LEVEL RESULTS

Funded by the Horizon 2020 programme of the European Union

This sheet shows the results of the CRREM stranding risk analysis for each property entered in the asset input sheet.

Upper part: Diagrams and specific carbon risk analysis results for selected individual properties. Lower part: Tabular information on all assets

ENERGY REDUTION PATHWAY (Asset #1 - Steinbach Tower)

Based on net energy = procured energy - exported energy = consumed energy - on-site generated energy

EXCESS EMISSIONS PER FLOOR AREA (Asset #1 - Steinbach Tower)

IRE BS

International Real Estate Business School

Universität Regensburg

COSTS OF ENERGY & CARBON EMISSIONS (Asset #1 - Steinbach Tower)

TOTAL NET ENERGY PER FLOOR AREA (Asset #1 - Steinbach Tower)

IRE BS

International Real Estate Business School

Universität Regensburg

Net-energy = procured energy - exported energy = consumed energy - on-site generated energy

Produced energy as percentage of consumed energy (100% means-net zero energy): 0,0%

Share of renewables on energy consumption: 0,0%

Slide 40 Sustainable Real Estate - SS 2020

8.981€

Retrofit costs [€]

5 173

IRE BS International Real Estate Business School Universität Regensburg

CARBON COSTS OF EXCESS EMISSIONS (Asset #1 - Steinbach Tower) Emission above/below decarbonisation pathway times carbon price

COSTS OF RETROFITTING TO COMPLY WITH DECARBONISATION PATHWAY

(Asset #1 - Steinbach Tower)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

Slide 41 Sustainable Real Estate - SS 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

IRE BS

International Real Estate Business School

International Real Estate Business School Universität Regensburg

Click the desired functionality. **Stranding risk analysis** requires **input data on asset level**. **Decarbonisation targets** for different property types and each EU member state can be viewed without entering specific asset data. Click the **CRREM logo** on any sheet to return to this summary.

Disclaimer

All the information in this tool is shared in good faith and for general information purpose only. The application is free of charge and without any commitment. The CRREM Consortium does not retrieve or archive any of your personal data or other metainformation. The CRREM Consortium does not retrieve, process, archive, or forward any of your input or output data . Neither the CRREM consortium, its members nor the European Commission can help you to recover data or can be made liable for any loss of data. Beyond the intended use, all content, images and the resulting data of the tool must not be transmitted to third parties, appropriated or commercially exploited without the CRREM consortium's consent. The tool is utilised at your own risk. Neither the CRREM consortium, its members nor the European Commission are liable for any damages resulting from the application of this tool.

The software, its documentation and its underlying data sets are provided "as is" and neither the European Commission, the CRREM Consortium, nor its member organisations have any obligation to provide maintenance, support or updates after the duration of the project. The Carbon Risk Real Estate Monitor (CRREM) is provided to you without any guarantee for correctness or completeness.

Any action you take upon the information you find in this tool, is strictly at your own risk. CRREM will not be liable for any losses and/or damages in connection with the use of our website. By using this tool, you hereby consent to this disclaimer and agree to its terms.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

Slide 43 Sustainable Real Estate - SS 2020

IRE BS International Real Estate Business School Universität Regensburg

STRANDING RISK ANALYSIS PORTFOLIO LEVEL RESULTS

Funded by the Horizon 2020 programme of the European Union

This sheet shows the aggregated results of the CRREM stranding risk analysis for all properties entered in the Asset input sheet. Analysis can be conducted for the entire portfolio or filtered by country, property type and individual entities (e.g. funds) as defined in the Asset input sheet .

Click here to see results on asset level

EVOLUTION OF STRANDING WITHIN PORTFOLIO

Diagrams on the right display the evolution of stranding within your portfolio. Upper graph: Relative share of stranded assets. Lower graph: Absolute figures. Choose whether to display data based on the number of buildings, gross floor area (GFA) or gross asset value (GAV). Choose whether to exclude individual assets or exclude them from a certain year on

Asset ID	Include	Sell in year
1	Yes	Don't sell
2	Yes	Don't sell
3	Yes	Don't sell
4	Yes	Don't sell
5	Yes	Don't sell
6	Yes	Don't sell
7	Yes	Don't sell
8	Yes	Don't sell
9	Yes	Don't sell
10	Yes	Don't sell
11	Yes	Don't sell
12	Yes	Don't sell

Share of stranded assets 100% 90% 80% Share of stranded assets 70% 60% 50% 40% 30% 20% 10% 0%

Note: If the share of stranded assets is chosen to be based on Gross asset values (GAV), the diagramm considers only those assets for which the GAV was entered by the user. Assets with no GAV provided are grayed out in the list of assets.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

Slide 44 Sustainable Real Estate - SS 2020

International Real Estate Business School Universität Regensburg

STRANDING EVENTS: NEED FOR ACTION?

The graph on the right provides a summary of stranding events in the course of time. Each circle corresponds to one asset not complying with its decarbonisation pathways for the first time. Circle size (GAV) and y-axis (Floor area) indicate the importance of an asset within the portfolio.

The area of the circles corresponds to the GAV of the stranded asset. Choose below which global warming target to

apply. The numbers next to the circles depict the asset ID.

Climate target:

Stranding events

Stranding events

(area of circles corresponds to GAV of asset)

2°C

GHG & ENERGY INTENSITY OF PORTFOLIO vs. 1.5°C- & 2°C-TARGETS

The graphs on the right present the GHG intensity (above) and energy intensity (bellow) of the selected portfolio (black line), benchmarking it against the floor-area-weighted decarbonisation pathway (orange: 2°C, blue: 1.5°C).

Exclude individual assets by means of the table below.

Asset ID	Include
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes

Average Portfolio GHG Intensity vs. Paris Targets

Tasks:

You are working for an investor with two assets under management. Due to the ongoing discussion about climate change, you want to control your company's portfolio emissions and assess, if the properties are future proof (2/1.5degree ready). All given values are displayed in the table below:

				Asset 1			Asset 2			
		Country		Netherlands		Austria				
	Build	ding Type		Office		Retail - Shopping Center				
		Emissions	Amount	Emissions factor [kgCO2/Unit]	Emissions [kgCO ₂ e]	Unit	Emissions factor [kgCO2/Unit]	Emissions [kgCO ₂ e]		
Total Ele	ctricity Consumpti	on [kWh]	500.000	0,468		2.000.000	0,314			
	G	ias [kWh]	-	0,18396		2.000.000	0,18396			
	Refrigerant lo	osses [kg]	10 kg CCI3F	4660		0				
18 Photovoltaic	s On-site Generati	on [kWh]	50.000	- 0,468		-	- 0,314	-		
	Total I	Emissions			-			-		
Gross Floor Area					9.500	25.000				
2	019 baseline GHG	intensity								

You decided to use the CRREM risk assessment toolkit, accessible via <u>www.crrem.eu</u>, which includes up-to-date emission targets (see later on).

Task 1: Calculating of the buildings' baseline emissions & GHG intensity:

1. Step: Calculating the (sum of) current emissions:

		Asset 1				
Country		Netherlands		Į		
Building Type		Office		}	500.000 k/Wh *0.486 kaCO e/k/Wh =	234 241 kgCO.e
	Amount	Emissions factor	Emissions			204.241 kg0020
Emissions		[kgCO2/Unit]	[kgCO ₂ e]		10 kg CCI3F*4660 kgCO ₂ e =	+ 46.600 kgCO ₂ e
Total Electricity Consumption [kWh]	500.000	0,468		[]		
Gas [kWh]	-	0,18396			50.000 kWh*0,486 kgCO ₂ e/kWh=	- 23.424 kgCO ₂ e
Refrigerant losses [kg]	10 kg CCI3F	4660		ΙΓ		<u> </u>
18 Photovoltaics On-site Generation [kWh]	50.000	- 0,468		ļļ	Total emissions	257 417 kgCO.e
Total Emissions			-	μ	10141 01113510113	237.417 kg00 ₂ c
				Į		
Gross Floor Area			9.500	Į		
2019 baseline GHG intensity						
		Asset 2				
Country	1	Austria]	F	
Building Type	Ret	tail - Shopping Cer	nter]	2000000 k//h*0 31 kaCO e/k//h=	627 314 kgCO o
					2.000.000 kVIII 0,51 kg00 ₂ e/kVIII=	027.314 Kg00 ₂ e
	Unit	Emissions factor	Emissions			
Furthering		[kgCO2/Unit]	[kgCO ₂ e]		2.000.000 KWn^0,18396	+367.920 kgCO ₂ e
Emissions	2,000,000	0.214		h	kaCO a/kWh =	
	2.000.000	0,314		{	$kyco_2e/kwn =$	
Gas [kWh]	2.000.000	0,18396		┝─		
Refrigerant losses [kg]	U	0.214		{	lotal emissions	995.234 kgCO₂e
18 Photovoltaics On-site Generation [kwn]	-	- 0,314	-	{		
			-	Γ		
			25,000	ł		
Gross Floor Area			25.000	ł		
2010 paceline (-H(- intencity				1		

Task 1: Calculating of the buildings' baseline emissions & GHG intensity:

2. Step: Calculating the baseline GHG intensity by dividing the total amount of emissions by the given gross floor area (GFA):

		Asset 1	
Country		Netherlands	
Building Type		Office	r
Emissions	Amount	Emissions factor [kgCO2/Unit]	Emissions [kgCO ₂ e]
Total Electricity Consumption [kWh]	500.000	0,468	
Gas [kWh]	-	0,18396	
Refrigerant losses [kg] 1	10 kg CCI3F	4660	
18 Photovoltaics On-site Generation [kWh]	50.000	- 0,468	
			-
Gross Floor Area			9,500
2019 baseline GHG intensity			5.500
		Assot 2	
Country		Austria	
Building Type	Ret	tail - Shopping Cer	iter
Emissions	Unit	Emissions factor [kgCO2/Unit]	Emissions [kgCO ₂ e]
Total Electricity Concumption [[/\//h]	2.000.000	0,314	
Total Electricity Consumption [kwn]	a aaa aa -	0,18396	
Gas [kWh]	2.000.000		
Gas [kWh] Refrigerant losses [kg]	2.000.000		
Gas [kWh] Refrigerant losses [kg] 18 Photovoltaics On-site Generation [kWh]	2.000.000	- 0,314	-
Gas [kWh] Gas [kWh] Refrigerant losses [kg] 18 Photovoltaics On-site Generation [kWh] Total Emissions	2.000.000 0 -	- 0,314	-
Gas [kWh] Gas [kWh] Refrigerant losses [kg] 18 Photovoltaics On-site Generation [kWh] Total Emissions	2.000.000	- 0,314	
Gas [kWh] Gas [kWh] Refrigerant losses [kg] 18 Photovoltaics On-site Generation [kWh] Total Emissions	2.000.000 0 -	- 0,314	-

International Real Estate Business School Universität Regensburg

IRE BS

Task 1: Results

				Asset 1		Asset 2				
		Country		Netherlands		Austria				
	Buil	ding Type		Office		Re	tail - Shopping Cei	nter		
Emissions			Amount	Emissions factor [kgCO2/Unit]	Emissions [kgCO ₂ e]	Amount	Emissions factor [kgCO2/Unit]	Emissions [kgCO ₂ e]		
Total Electricity Consumption [kWh]			500.000	0,468	234.241	2.000.000	0,314	627.314		
	G	as [kWh]	-	0,18396	-	2.000.000	0,18396	367.920		
	Refrigerant lo	osses [kg]	10 kg CCI3F	4660	46600	0		0		
18 Photovoltaics	on-site Generati	on [kWh]	50.000	- 0,468	- 23.424	-	- 0,314	-		
	Total I	Emissions			257.417			995.234		
Gross Floor Area					9.500	25.000				
2019 baseline GHG intensity				27,1		39,8				

Task 2: Assessing the year of stranding:

According to the CRREM tool, you already know your emission targets for the given property locations and usage types:

Office building, Netherlands:

2 °C targets

1.5 °C targets

Whole building GHG	intensity pathway:	Whole buildi	ng GHG intensity pathway:
Year kgCO2e/m²/yr	Year kgCO2e/m²/yr	Year kgCO2e/m²	/yr Year kgCO2e/m²/yr
2018: 120,0	2035: 53,1	2018: 120,0	2035: 41,2
2019: 114,0	2036: 49,7	2019: 111,1	2036: 38,0
2020: 109,6	2037: 46,5	2020: 103,9	2037: 34,8
2021: 106,2	2038: 43,3	2021: 97,9	2038: 31,7
2022: 103,3	2039: 40,4	2022: 92,6	2039: 28,5
2023: 100,4	2040: 37,4	2023: 87,7	2040: 25,4
2024: 97,3	2041: 34,6	2024: 83,0	2041: 22,3
2025: 94,0	2042: 31,7	2025: 78,5	2042: 19,3
2026: 90,3	2043: 28,8	2026: 74,2	2043: 16,4
2027: 86,3	2044: 26,0	2027: 70,0	2044: 13,7
2028: 82,0	2045: 23,2	2028: 65,9	2045: 11,2
2029: 77,6	2046: 20,5	2029: 62,0	2046: 8,9
2030: 73,2	2047: 17,9	2030: 58,3	2047: 6,9
2031: 68,9	2048: 15,5	2031: 54,6	2048: 5,2
2032: 64,6	2049: 13,5	2032: 51,2	2049: 3,8
2033: 60,6	2050: 11,8	2033: 47,8	2050: 2,7
2034: 56,8		2034: 44,5	

Task 2: Assessing the year of stranding:

According to the CRREM tool, you already know your emission targets for the given property locations and usage types:

Retail - Shopping Center, Austria:

2°C targets

Whole building GHG intensity pathway:			Who	le building GHC	inten	sity pathway:	
Year	kgCO ₂ e/m²/yr	Year	kgCO ₂ e/m²/yr	Year	kgCO ₂ e/m²/yr	Year	kgCO ₂ e/m²/y
2018:	47,9	2035:	26,6	2018:	47,9	2035:	19,1
2019:	46,4	2036:	25,4	2019:	45,1	2036:	17,8
2020:	45,3	2037:	24,3	2020:	42,8	2037:	16,5
2021:	44,4	2038:	23,2	2021:	40,7	2038:	15,2
2022:	43,6	2039:	22,1	2022:	38,8	2039:	13,9
2023:	42,7	2040:	21,1	2023:	36,9	2040:	12,6
2024:	41,8	2041:	20,0	2024:	35,2	2041:	11,3
2025:	40,7	2042:	18,9	2025:	33,4	2042:	10,0
2026:	39,4	2043:	17,9	2026:	31,8	2043:	8,8
2027:	38,1	2044:	16,8	2027:	30,1	2044:	7,6
2028:	36,6	2045:	15,7	2028:	28,6	2045:	6,5
2029:	35,1	2046:	14,6	2029:	27,1	2046:	5,4
2030:	33,6	2047:	13,6	2030:	25,7	2047:	4,5
2031:	32,1	2048:	12,6	2031:	24,3	2048:	3,7
2032:	30,7	2049:	11,7	2032:	22,9	2049:	3,1
2033:	29,3	2050:	11,1	2033:	21,6	2050:	2,5
2034:	27,9			2034:	20,3		

1.5 °C targets

is project has received funding from the European Union's Horizon 2020)
esearch and innovation programme under grant agreement no. 785058	3

2°C targets

Task 2: Assessing the year of stranding:

Find the year in which the asset will face stranding:

(Without accounting for grid decarb. and change in HDD/CDD)

Office building, Netherlands:

27,1 kgCO₂e/m²

Stranding 2 °C : 2044

Stranding 1.5 °C : 2040

8			8		
Whole building GHG intensity pathway:			Whole building GHG intensity pathway:		
Year kgCO2e/m²/yr	Year kgCO2e/m²/yr		Year kgCO2e/m²/yr	Year kgCO ₂ e/m²/yr	
2018: 120,0	2035: 53,1		2018: 120,0	2035: 41,2	
2019: 114,0	2036: 49,7		2019: 111,1	2036: 38,0	
2020: 109,6	2037: 46,5		2020: 103,9	2037: 34,8	
2021: 106,2	2038: 43,3		2021: 97,9	2038: 31,7	
2022: 103,3	2039: 40,4		2022: 92,6	2039: 28,5	
2023: 100,4	2040: 37,4		2023: 87,7	2040: 25,4	
2024: 97,3	2041: 34,6		2024: 83,0	2041: 22,3	
2025: 94,0	2042: 31,7		2025: 78,5	2042: 19,3	
2026: 90,3	2043: 28,8		2026: 74,2	2043: 16,4	
2027: 86,3	2044: 26,0		2027: 70,0	2044: 13,7	
2028: 82,0	2045: 23,2		2028: 65,9	2045: 11,2	
2029: 77,6	2046: 20,5		2029: 62,0	2046: 8,9	
2030: 73,2	2047: 17,9		2030: 58,3	2047: 6,9	
2031: 68,9	2048: 15,5		2031: 54,6	2048: 5,2	
2032: 64,6	2049: 13,5		2032: 51,2	2049: 3,8	
2033: 60,6	2050: 11,8		2033: 47,8	2050: 2,7	
2034: 56,8			2034: 44,5		

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

Slide 53 Sustainable Real Estate - SS 2020

IRE BS

1.5 °C targets

International Real Estate Business School

Task 2: Assessing the year of stranding:

Find the year in which the asset will face stranding:

(Without accounting for grid decarb. and change in HDD/CDD)

Retail - Shopping Center, Austria:

Current GHG intensity (see task 1):

39,8 kgCO₂e/m²

Stranding 2 °C : 2026

Stranding 1.5 °C : 2022

2 °C targets

Whole building GHG intensity pathway:				
	Year	kgCO ₂ e/m²/yr	Year	kgCO ₂ e/m²/yr
	2018:	47,9	2035:	26,6
	2019:	46,4	2036:	25,4
	2020:	45,3	2037:	24,3
	2021:	44,4	2038:	23,2
	2022:	43,6	2039:	22,1
	2023:	42,7	2040:	21,1
	2024:	41,8	2041:	20,0
	2025:	40,7	2042:	18,9
	2026:	39,4	2043:	17,9
	2027:	38,1	2044:	16,8
	2028:	36,6	2045:	15,7
	2029:	35,1	2046:	14,6
	2030:	33,6	2047:	13,6
	2031:	32,1	2048:	12,6
	2032:	30,7	2049:	11,7
	2033:	29,3	2050:	11,1
	2034:	27,9		

1.5 °C targets

REBS

International Real Estate Business School

Universität Regensburg

Whole building GHG intensity pathway:				
Year	kgCO ₂ e/	m²/yr	Year	kgCO ₂ e/m²/yr
2018:	47,9		2035:	19,1
2019:	45,1		2036:	17,8
2020:	42,8		2037:	16,5
2021:	40,7		2038:	15,2
2022:	38,8		2039:	13,9
2023:	36,9		2040:	12,6
2024:	35,2		2041:	11,3
2025:	33,4		2042:	10,0
2026:	31,8		2043:	8,8
2027:	30,1		2044:	7,6
2028:	28,6		2045:	6,5
2029:	27,1		2046:	5,4
2030:	25,7		2047:	4,5
2031:	24,3		2048:	3,7
2032:	22,9		2049:	3,1
2033:	21,6		2050:	2,5
2034:	20,3			

Task 3: Calculating the excess emissions after stranding:

T3.1: You are interested in the amount of emissions, that exceed the relevant decarbonisation targets.

```
Excess emissions = \sum_{t=1}^{n} (Baseline \ Emissions \ - \ Emission \ target_t); t= year of stranding
```

Excess emissions Asset 1:

1.5 °C (2040-2050):

 $(27,1 \text{ kgCO}_2\text{e/m}^2 - 25,4 \text{ kgCO}_2\text{e/m}^2) + (27,1 \text{ kgCO}_2\text{e/m}^2 - 22,3 \text{ kgCO}_2\text{e/m}^2) + (27,1 \text{ kgCO}_2\text{e/m}^2 - 19,3 \text{ kgCO}_2\text{e/m}^2) + (27,1 \text{ kgC}_2\text{e/m}^2) + (27,1 \text{ kgC}_2\text{$

162,3 kgCO₂e/m²

2 °C (2044-2050):

 $(27,1 \text{ kgCO2e/m}^2 - 26,0 \text{ kgCO2e/m}^2) + (27,1 \text{ kgCO2e/m}^2 - 23,2 \text{ kgCO2e/m}^2) + (27,1 \text{ kgCO2e/m}^2 - 20,5 \text{ kgCO2e/m}^2) + (27,1 \text{ kgCO2e/m}^2 - 17,9 \text{ kgCO2e/m}^2) + (27,1 \text{ kgCO2e/m}^2 - 15,5 \text{ kgCO2e/m}^2) + (27,1 \text{ kgCO2e/m}^2 - 13,5 \text{ kgCO2e/m}^2) + (27,1 \text{ kgCO2e/m}^2 - 11,8 \text{ kgCO2e/m}^2) =$

61,3 kgCO₂e/m²

Task 3: Calculating the excess emissions after stranding:

```
T3.1: You are interested in the amount of emissions, that exceed the relevant decarbonsiation targets.
Excess emissions = \sum_{t=1}^{n} (Baseline \ Emissions \ - \ Emission \ target_{t}); t= year of stranding
Excess emissions Asset 2:
```

1.5 °C (2022-2050):

 $(39.8 \text{ kgCO}_2\text{e}/\text{m}^2 - 38.8 \text{ kgCO}_2\text{e}/\text{m}^2) + ... + (39.8 \text{ kgCO}_2\text{e}/\text{m}^2 - 2.5 \text{ kgCO}_2\text{e}/\text{m}^2) =$

619,0 kgCO2e/m²

2 °C (2026-2050):

 $(39.8 \text{ kgCO}_2\text{e}/\text{m}^2 - 39.4 \text{ kgCO}_2\text{e}/\text{m}^2) + ... + (39.8 \text{ kgCO}_2\text{e}/\text{m}^2 - 11.1 \text{ kgCO}_2\text{e}/\text{m}^2) =$

396,6 kgCO₂e/m²

Task 4: Calculating the carbon costs in the year of stranding:

T4.1: You are interested in the (direct) potential financial threats of stranding. Based on the current ETS price, you assume a (constant) carbon price of 29,- €/tCO₂. Define the Net-Present-Value (NPV) of the carbon costs in the year of stranding. Interest rate: 2,0 %.

Asset 1:

	1.5°C	2°C
year of stranding	2040; in 20 years	2044; in 24 years
excess emission in year of stranding	27,1 – 25,4 = 1,7 kgCO ₂ /m ²	27,1 – 26,0 = 1,1 kgCO ₂ /m ²
carbon costs per m ² :	(29,00 €/t / 1.000) *1,7 kgCO2/m² = 0,0493 €/m²	(29,00 €/t / 1.000) *1,1 kgCO2/m ² = 0,0319 €/m ²
Total carbon costs: (9.500 m ²)	0,0493 €/m² * 9.500 m² = 468,35 €	0,0319 €/m² * 9.500 m² = 303,05 €
NPV:	468,35 € * 1/(1+0,02)^20 = 315,17 €	303,05 € * 1/(1+0,02)^24 = 188,41 €

Remarks:

Pay attention to the unit conversion between kg and tons of CO_2

Pay attention to the gross floor area of the building!

Task 4: Calculating the carbon costs in the year of stranding:

T4.1: You are interested in the (direct) potential financial threats of stranding. Based on the current ETS price, you assume a (constant) carbon price of 29,- €/tCO₂. Define the Net-Present-Value (NPV) of the carbon costs in the year of stranding. Interest rate: 2,0 %.

Asset 2:

	1.5°C	2°C
year of stranding	2022; in 2 years	2026; in 6 years
excess emission in year of. stranding	39,8 – 38,8 = 1,0 kgCO ₂ /m ²	39,8 – 39,4 = 0,4 kgCO ₂ /m ²
carbon costs per m²:	(29,00 €/t / 1.000) * 1,0 kgCO2/m ² = 0,029 €/m ²	(29,00 €/t / 1.000) * 0,4 kgCO2/m ² = 0,0116 €/m ²
Total carbon costs: (25.000 m ²)	0,029 €/m² * 25.000 m² = 725,00 €	0,0116 €/m² * 25.000 m² = 290,00 €
NPV:	725,00 € * 1/(1+0,02)^2 = 696,85 €	290,00 € * 1/(1+0,02)^6 = 257,51 €

Remarks:

Pay attention to the unit conversion between kg and tons of CO_2

Pay attention to the gross floor area of the building!

International Real Estate Business School Universität Regensburg

IRE BS

Task 4: Calculating the carbon costs in the year of stranding:

T4.2: What costs would occur, if the carbon price increases

by +3 %, +5 % or +7 % p.a.?

Relevant carbon prices for Asset 1:

€/tCO ₂	+ 3 % p.a.	+ 5 % p.a.	+ 7 % p.a.
2040	52,38	76,95	112,22
2044	58,95	93,53	147,10

Relevant carbon prices for Asset 2:

€/tCO ₂	+ 3 % p.a.	+ 5 % p.a.	+ 7 % p.a.
2022	30,77	31,97	33,20
2026	34,63	38,86	43,52

	+3% p.a.	+5% p.a.	+7% p.a.
2020	29,00	29,00	29,00
2021	29,87	30,45	31,03
2022	30,77	31,97	33,20
2023	31,69	33,57	35,53
2024	32,64	35,25	38,01
2025	33,62	37,01	40,67
2026	34,63	38,86	43,52
2027	35,67	40,81	46,57
2028	36,74	42,85	49,83
2029	37,84	44,99	53,32
2030	38,97	47,24	57,05
2031	40,14	49,60	61,04
2032	41,35	52,08	65,31
2033	42,59	54,68	69,89
2034	43,87	57,42	74,78
2035	45,18	60,29	80,01
2036	46,54	63,30	85,61
2037	47,93	66,47	91,61
2038	49,37	69,79	98,02
2039	50,85	73,28	104,88
2040	52,38	76,95	112,22
2041	53,95	80,79	120,08
2042	55,57	84,83	128,48
2043	57,23	89,07	137,48
2044	58,95	93,53	147,10
2045	60,72	98,20	157,40
2046	62,54	103,11	168,41
2047	64,42	108,27	180,20
2048	66,35	113,68	192,82
2049	68,34	119,37	206,31
2050	70,39	125,34	220,76

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

Slide 59 Sustainable Real Estate - SS 2020

The effects of carbon pricing:

- Based on the excess emissions, the tool is able to calculate the expenditures for a given carbon price:

Task 4: Calculating the carbon costs in the year of stranding:

T4.2: What costs would occur, if the carbon price increases by +3 %, +5 % or +7 % p.a.?

Asset 1:

	1.5°C	2°C
year of stranding	2040; in 20 years	2044; in 24 years
excess emission in year of. stranding	27,1 – 25,4 = 1,7 kgCO ₂ /m ²	27,1 – 26,0 = 1,0 kgCO ₂ /m ²
carbon costs per m²:	(52,38 €/t / 1.000) *1,7 kgCO2/m2 = 0,0890 €/m2 (+3 % p.a.)0,1308 €/m2 (+5 % p.a.)0,1908 €/m2 (+7 % p.a.)	(58,95 €/t / 1.000) *1,0 kgCO2/m2 = 0,0590 €/m2 (+3 % p.a.)0,0935 €/m2 (+5 % p.a.)0,1471 €/m2 (+7 % p.a.)
Total carbon costs: (9.500 m²)	0,0890 €/m ² * 9.500 m ² = 845,50 € 0,1308 €/m ² * 9.500 m ² = 1.242,60 € 0,1908 €/m ² * 9.500 m ² = 1.812,35 €	0,0590 €/m ² * 9.500 m ² = 560,50 € 0,0935 €/m ² * 9.500 m ² = 888,25 € 0,1471 €/m ² * 9.500 m ² = 1.397,45 €
NPV:	845,50 € * 1/(1+0,02)^20 = 569,00 € 1.242,60 € * 1/(1+0,02)^20 = 836,23 € 1.812,35 € * 1/(1+0,02)^20 = 1.219,66 €	560,50 € * 1/(1+0,02)^24 = 348,47 € 888,25 € * 1/(1+0,02)^24 = 552,24 € 1.397,45 € * 1/(1+0,02)^24 = 868,82 €
Delta to Task 4.1	Up to 522,81 €	Up to 680,41 €

Task 4: Calculating the carbon costs in the year of stranding:

T4.2: What costs would occur, if the carbon price increases by +3 %, +5 % or +7 % p.a.?

Asset 2:

	1.5°C	2°C
year of stranding	2022; in 2 years	2026; in 6 years
excess emission in year of. stranding	39,8 – 38,8 = 1,0 kgCO ₂ /m ²	39,8 – 39,4 = 0,4 kgCO ₂ /m ²
carbon costs per m²:	$(30,77 \notin 1.000) * 1,0 \text{ kgCO}_2/\text{m}^2 = 0,03077 \notin m^2 (+3 \% p.a.)$ $0,03197 \notin m^2 (+5 \% p.a.)$ $0,03320 \notin m^2 (+7 \% p.a.)$	$(34,63 €/t / 1.000) * 0,4 kgCO_2/m2 = 0,01385 €/m2 (+3 % p.a.)0,01554 €/m2 (+5 % p.a.)0,01741 €/m2 (+7 % p.a.)$
Total carbon costs: (25.000 m²)	0,03077 €/m ² * 25.000 m ² = 769,25 € 0,03197 €/m ² * 25.000 m ² = 799,25 € 0,03320 €/m ² * 25.000 m ² = 830,00 €	0,01385 €/m ² * 25.000 m ² = 462,50 € 0,01554 €/m ² * 25.000 m ² = 388,50 € 0,01741 €/m ² * 25.000 m ² = 435,25 €
NPV:	769,25 € * 1/(1+0,02)^2 = 739,38 € 799,25 € * 1/(1+0,02)^2 = 768,21 € 830,00 € * 1/(1+0,02)^2 = 797,77 €	462,50 € * 1/(1+0,02)^6 = 410,69 € 388,50 € * 1/(1+0,02)^6 = 344,98 € 435,25 € * 1/(1+0,02)^6 = 386,49 €
Delta to Task 4.1	Up to 100,92 €	Up to 128,98 €

Calculating emissions and stranding with the CRREM tool:

(Same assets as in Task 1 but including the effects of grid decarbonisation and change in HDD/CDD)

				Asset 1		Asset 2			
		Country	Country Netherlands			Austria			
	Build	ding Type	Office			Retail - Shopping Center			
Emissions		Amount	Emissions factor [kgCO2/Unit]	Emissions [kgCO ₂ e]	Amount	Emissions factor [kgCO2/Unit]	Emissions [kgCO ₂ e]		
Total Electricity Consumption [kWh]		500.000	0,468	234.241	2.000.000	0,314	627.314		
Gas [kWh]		-	0,18396	-	2.000.000	0,18396	367.920		
Refrigerant losses [kg]		10 kg CCI3F	4660	46600	0		0		
18 Photovoltaics On-site Generation [kWh]		50.000	- 0,468	- 23.424	-	- 0,314	-		
Total Emissions				257.417			995.234		
Gross Floor Area		9.500			25.000				
2019 baseline GHG intensity		27,1			39,8				

→ Instead of static baseline emissions (as calculated in task 1), the tool accounts for the effects of grid decarbonisation and the change in HDD/CDD

Calculating emissions and stranding with the CRREM tool:

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

Slide 64 Sustainable Real Estate - SS 2020

Calculating emissions and stranding with the CRREM tool – Asset 1:

							Excess emissions	
	Emissions	GHG Intensity	1.5°C-target	2°C-target	1.5°C-stranding	2°C-stranding	1.5°C-target	2°C-target
2018	257.417	27,1	133,4	132,3	No	No	- 1.009.547	- 999.603
2019	243.489	25,6	128,5	126,6	No	No	- 977.690	- 958.866
2020	230.481	24,3	123,9	121,1	No	No	- 946.874	- 920.145
2021	231.824	24,4	118,4	116,9	No	No	- 892.932	- 878.840
2022	233.176	24,5	112,9	112,4	No	No	- 839.762	- 834.182
2023	234.538	24,7	107,6	108,3	No	No	- 787.349	- 794.069
2024	235.910	24,8	102,3	103,8	No	No	- 735.688	- 750.665
2025	237.292	25,0	97,1	99,9	No	No	- 684.773	- 711.748
2026	231.502	24,4	91,9	95,2	No	No	- 641.768	- 672.957
2027	225.889	23,8	86,9	91,0	No	No	- 599.315	- 638.466
2028	220.446	23,2	81,9	86,4	No	No	- 557.408	- 600.661
2029	215.168	22,6	77,0	81,9	No	No	- 516.030	- 563.346
2030	210.050	22,1	72,1	77,9	No	No	- 475.179	- 530.215
2031	208.665	22,0	69,3	75,0	No	No	- 449.883	- 503.415
2032	207.291	21,8	66,1	71,2	No	No	- 420.849	- 469.525
2033	205.929	21,7	62,9	67,9	No	No	- 391.741	- 439.307
2034	204.579	21,5	59,7	64,6	No	No	- 362.565	- 409.027
2035	203.240	21,4	56,5	60,9	No	No	- 333.309	- 374.930
2036	200.415	21,1	53,3	57,9	No	No	- 305.475	- 349.768
2037	197.642	20,8	50,0	55,4	No	No	- 277.516	- 328.272
2038	194.919	20,5	46,8	52,4	No	No	- 249.435	- 302.915
2039	192.245	20,2	43,5	49,4	No	No	- 221.222	- 277.453
2040	189.619	20,0	40,3	46,9	No	No	- 192.881	- 255.665
2041	186.785	19,7	37,4	44,1	No	No	- 168.957	- 232.422
2042	184.006	19,4	34,4	41,6	No	No	- 142.912	- 211.264
2043	181.283	19,1	31,4	39,1	No	No	- 116.614	- 189.900
2044	178.614	18,8	28,3	36,1	No	No	- 90.059	- 164.465
2045	175.998	18,5	25,2	33,5	No	No	- 63.240	- 142.673
2046	171.626	18,1	22,1	31,4	No	No	- 37.968	- 126.372
2047	167.402	17,6	18,9	29,2	No	No	- 12.331	- 109.793
2048	163.321	17,2	15,8	27,0	Yes	No	13.674	- 92.938
2049	159.377	16,8	13,0	24,8	Yes	No	35.547	- 75.808
2050	155.567	16,4	10,3	22,5	Yes	No	57.273	- 58.406

ightarrow Stranding occurs later; the tool offers the possibility to calculate the excess emissions

Calculating emissions and stranding with the CRREM tool – Asset 2:

						Excess emissions	
Emissions	GHG Intensity	1.5°C-target	2°C-target	1.5°C-stranc	2°C-strandir	1.5°C-target	2°C-target
995.234	39,8	52,7	52,4	No	No	- 322.816,12	- 314.773,96
1.004.087	40,2	52,5	51,8	No	No	- 307.666,13	- 291.728,40
1.013.080	40,5	52,2	51,3	No	No	- 292.575,87	- 268.875,35
1.012.567	40,5	50,5	50,3	No	No	- 250.444,36	-245.100,23
1.012.053	40,5	48,8	49,2	No	No	- 208.334,24	- 218.386,46
1.011.539	40,5	47,1	48,2	No	No	- 166.239,05	- 194.646,47
1.011.025	40,4	45,4	47,2	No	No	- 124.163,78	- 167.979,62
1.010.512	40,4	43,7	46,2	No	No	- 82.111,72	- 144.301,18
1.000.491	40,0	42,0	45,0	No	No	- 49.580,47	- 124.249,32
990.610	39,6	40,3	43,9	No	No	- 16.920,88	- 107.041,50
980.867	39,2	38,6	42,7	Yes	No	15.867,72	- 86.758,75
971.260	38,9	36,9	41,5	Yes	No	48.796,66	- 66.352,92
961.786	38,5	35,2	40,4	Yes	No	81.863,88	- 48.781,99
941.556	37,7	34,1	39,6	Yes	No	88.167,67	- 47.258,44
921.974	36,9	33,0	38,5	Yes	No	95.838,92	- 41.517,84
903.018	36,1	31,9	37,6	Yes	No	104.669,77	- 37.723,26
884.669	35,4	30,8	36,7	Yes	No	114.643,17	- 32.897,57
866.905	34,7	29,6	35,6	Yes	No	125.756,37	- 23.948,94
856.805	34,3	28,5	34,8	Yes	No	145.091,10	- 13.104,24
846.885	33,9	27,3	34,1	Yes	No	165.183,55	- 4.850,63
837.144	33,5	26,0	33,2	Yes	Yes	186.035,70	7.113,40
827.576	33,1	24,8	32,3	Yes	Yes	207.663,76	19.660,10
818.180	32,7	23,5	31,5	Yes	Yes	230.070,32	29.540,18
808.042	32,3	22,4	30,7	Yes	Yes	249.229,63	41.487,16
798.104	31,9	21,1	29,9	Yes	Yes	269.506,33	50.947,74
788.363	31,5	19,9	29,1	Yes	Yes	290.699,57	61.054,96
778.815	31,2	18,6	28,1	Yes	Yes	312.824,72	75.224,52
769.455	30,8	17,3	27,3	Yes	Yes	335.897,90	86.679,23
759.270	30,4	16,0	26,6	Yes	Yes	358.915,37	94.295,50
749.310	30,0	14,7	25,9	Yes	Yes	382.948,39	102.542,98
739.570	29,6	13,3	25,1	Yes	Yes	408.013,70	111.425,12
730.045	29,2	12,1	24,4	Yes	Yes	428.764,73	120.945,93
720.730	28,8	10,8	23,6	Yes	Yes	449.873,40	131.109,52

\rightarrow Stranding occurs later; the tool offers the possibility to calculate the excess emissions

- 1. Introducing the CRREM project
- 2. Specific Issues regarding Carbon Risk (Q&A)
- 3. Case Study: Calculating carbon emissions & stranding risks

4. What's new?

What's new?

CRREM GLOBAL

- Extension of the CRREM pathways: <u>www.CRREM.org</u>
- Including residential buildings and key global real estate markets

GEOGRAPHIC SCOPE

Corporate communication of CO2 targets: "2-degree readiness"

- Corporate communication of CO2 targets: "2-degree readiness"
- Reporting templates to produce 2-degree-ready reports for their assets, enabling transparent reporting of targets and performance.
- Standardisation by comparison with other reporting initiatives and formats, especially

(Automatic) link between CRREM Tool and Reporting Templates for parts of the template

International Real Estate Business School Universität Regensburg

Thanks for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 785058

09.06.2020

IRE | BS International Real Estate Business School

Sustainable Real Estate - SS 2020

University Seminar "CRREM"